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Abstract—This paper concerns the construction and stability properties of steady-state solutions
of a system of partial differential equations that model simple shearing of a stab of thermo-plastic
material. The class of constitutive laws that give rise to a variational formulation of the steady-state
problem is identitied, and a phase-plane argument is used to construct time-independent solutions
that may be interpreted as steady-state shear-bands. Our variational framework captures several
commonly adopted constitutive Taws, Techniques from bifurcation theory for variational problems
are applied to classify stable and unstable solutions merely in terms of the shape of the solution
branch in the distinguished biturcation diagram that arises when average strain-rate is plotted
against shearing force. There are two novel features to our approach. First, the two problems in
which loading is imposed by cither stress boundary conditions or velocity boundary conditions are
treated by one analysis, and the differing stability properties of solutions are explained naturally,
Sceond. the stability analysis is based upon a symmetric cigenvalue problem arising from the
appropriate second variation. The link with dynamic behavior is made through a Lyapunov func-
tional, and the lincarized dynamics are not cohsidered directly. Provided the proper existence
theorems for the time-dependent problem can be proven or are assumed, our Lyapunov approach
yiclds the appropriate nonlinear dynamic stability properties of steady-state solutions. In this paper
we shall consider the case in which vanishing strain-rate implics zero stress, i.¢. there is no residual
or yickl stress present in our model, but our analysis can be extended to encompass constitutive
laws modelling nonzero yield stress.

. INTRODUCTION

In this paper we shall study an clementary one-dimensional thermo-plastic model of the
simple shearing of a solid in motion at a high strain-rate. More particularly, we shall study
questions of existence and stability of nonuniform, steady-state solutions of the system of
partial differential equations

pr, =0y,

petl, = 48, +ov.. ()

Here the unknowns are the velocity ¢(x, 1), the temperature 0(x, 1) and the stress o{x, 1),
which are each functions of time ¢ > 0, and one space dimension —h < x < /. The problem
parameters are the density p, specific heat ¢, coefficient of thermal conductivity 4 and half-
width A. (We have set the Taylor-Quinncy coefficient to unity.) The material parameters
are assumed to be constants, independent of time, space, temperature and velocity. Equa-
tions (1) will be interpreted as describing the temperature 0 and horizontal velocity v of a
long. prismatic slab of material. The cross-section of the slab is implicitly assumed to be a
rectangle of dimensions 2/t x d. The top and bottom edges of the slab are loaded with a
constant shear that acts parallel to the axis of the prism. [t is assumed that the only spatial
dependence of the velocity and temperature arises across the depth of the slab as measured
by the variable x, —h < x < /. To be compatible with the assumption of no spatial
dependence of the solution across the width of the slab, the vertical sides of the slab are
assumed to be insulated and unloaded. Equations (1) are completed once a constitutive law
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and boundary conditions are prescribed. The boundary conditions that will be explicitly
considered are the stress boundary conditions

G=0yl,4. UVl=h0)=0, 0=0, . ,,. >0, {

‘ol

or the velocity boundary conditions
vihoy =vy. o(=hy=0. 0=0,_. ,,. 1>0. (4)
In both cases the bottom edge of the slab is located in space by the prescription ¢( — /. 1) = 0.

A shear motion is then induced by the imposition of cither a stress or a velocity at the top

d

[¢7]

€.

It is convenient to nondimensionalize the problem with A, ¢ph*/i. pdh® and 0, as units
of length. time. mass and temperature. respectively. Then eqns (1)-(4) can be rewritten in
the nondimensional form ;

[ied

vo=a,.

0, =0 +ror,. (3)

a=all.r). (6)

a=0,, . tl=1L0)y=0 0=0{_ ,,. >0, (7)
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In terms of dimensional quantities the nondimensional parameter w is
/"_‘
K= (9)

- cpthto,

As we shall henceforth not consider dimensional quantities. the sume symbols have been
retained for the associated nondimensional variables.

System (5) arises as a model in several arcas of continuum mechanics. Of course the
underlying application determines the appropriate arguments and qualitative form of the
constitutive relation for the stress a. In fluid dynamics, egns (5) with constitutive relation
o = ke v have been used as a simple model for Couette flow. The question of stability
ol the steady-state solutions in this context has been addressed by many authors, including
Regirer (1957), Joseph (1964) and Mazo and Ruderman (1986) among others. Equations
with a superlicial similarity to system (5) also occur in the theory of combusion {cf.
Zeldovich er al. (1985)]. When attention is restricted to the so-called “intermediate-
asymptotic theory™ (Zeldovich et al., 1985). the system of equations describing combustion
reduce o i form that is mathematically equivalent to the steady-state version of the system
(5). The phenomenon of multiplicity of solutions was obscrved in this combustion theory
context for a particular exponential nonhinearity, and stability questions huve also been
addressed (Gel'fand, 1963, Zeldovich et al., 1985). Our work differs significantly because in
order to mode! thermo-plasticity more general nonlinearities must be allowed in constitutive
relation (6). As a consequence the steady-state equations are more complicated. Further-
more, the first of the dynamic equations (5) depends quasi-linearly on velocity. whereas the
corresponding equation in combustion theory has a simpler semi-lincar form.

In this presentation the application we have in mind is the modelling of the plastic
behavior of solids. The litcrature concerning such high strain-rate deformations is extensive.
The assumption of high strain-rate enters in part because elastic effects, t.e. dependence of
the constitutive relation upon strain, are neglected, and attention is focussed upon plastic
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Fig. |. Typical stress (ordinate) versus strain-rate (abscissa) curves for three fixed values of the
nondimensional temperature . The particular plots shown are for the constitutive function g{p)
defined by
g{y) = vx’,
where the choice of constants v = 1.2 = 0.02 [cl- (I5)] and p = 0.2are motivated by the experimental
data furnished in Wright (1987).

behavior due to dependence of the stress upon the strain-rate ¢,. The model assumed here,
or simple variants of it, have been investigated recently by Burns and Trucano (1982),
Burns (1983), Wright and Batra (1985), Wright (1987), Fressengas and Molinari (1987),
Anand er al. (1987), Tzavaras (1986, 1987), Chen er ol (1989) and Molinari and Leroy
(1990). The main point ol interest in these works is an understanding of the mechanisms
that lead to shear-band solutions. In shear-bands the velocity gradient is extremely high
within & narrow band of the material, and small outside it. Such configurations have been
observed experimentally [ef. Rogers (1979), Hutchinson (1984), Marchand and Dufly
(1988) and Needleman and Tvergaard (1987)]. One interpretation of the mechanism for
the formation of shear-bands is that the plastic work generates heat which thermally softens
the material. This softening is thought to overcome any strain-hardening or strain-rate
stifening effects. In our notation strain-hardening would be modelled by dependence of
constitutive relation (6) on the deformation gradient, Here we neglect strain-hardening in
deference to strain-rate effects, which are modelled by the dependence of constitutive
relation (6) upon the velocity gradient ¢, In the presence of strain-hardening effects steady-
state solutions are not possible, so that, as is commonplace (cf. the references cited above),
our steady-state model should properly be interpreted as describing intermediate time
behavior that arises before effects such as fracture dominate.

The qualitative form of the stress vs strain-rate constitutive relations that are assumed
here are depicted in Fig. 1. In common with all the above authors we assume that vanishing
strain-rate implics zero stress. Thus the model at low strain-rates is of questionable validity.
In Part 11 of this paper (in preparation) we extend our techniques to constitutive relations
that retain a vestige of clastic effects through a non-zero yield stress, which we interpret as
the limiting positive value of stress as the strain-rate is decrcased to zero (with temperature
held fixed). However the analysis and results in this extended model are considerably more
intricate, and in Part [ we have chosen to first introduce our solution techniques and results
in the context of the more standard and simple model.

In the case of adiabatic problems—in which the boundary conditions on § appearing
in (7)-(8) arc changed to model thermally insulated walls, or the extreme case of a non-
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conducting material with 4 = O0—a typical analysis has been limited to showing that the
steady. uniform-shear solution is unstable at high strain-rates. Perturbation analysis has
been the main analytical tool used in such models of the prediction of the onset of shear
localization. For example. Bai (1982) and Shawki ez a/. (1983) examined an infintte domain
undergoing simple shearing, while Douglas and Chen (1983) studied adiabatic anti-plane
shear. Burns and Trucano (1982) considered a plate of rather general material under
simple shear with tnsulated {adiabatic) thermal boundary conditions, and constant velocity
imposed at the upper edge of the plate. In the case of adiabatic boundary conditions. truly
steady-state solutions cannot arise due to the generation of heat which cannot escape
through the boundary. Accordingly. the perturbation analyses of Burns and Trucano (1982)
and Burns (1985) are based upon the assumption that the basic solution varies slowly in
time. The results they obtain agree well with the experimental observations ot localization
described by Costin ¢r al. (1979). Subsequently. Fressengas and Molinart (1987) introduced
another perturbation method to account for a more pronounced time-variation of the basic
solution. In a recent paper Molinart and Leroy (1990) investigate the steady-state solutions
of the governing equations (1)-(2) when the stress-strain law is a monomial in ¢ "r,
and the boundary conditions are mixed in velocity and stress. Consequently the class of
constitutive relations assumed by Molinart and Leroy is considerably more restrictive than
that treated here, although they do allow more gencral boundary conditions. Their approach
also involves the further approximation of a quasi-static linear perturbation analysis (i.c.
they consider only the lincarized system in which the acceleration term pe, is neglected) to
classify the stable and unstable steady-state solutions in a rather formal sense. In the cascs
where the two models overlap. the predictions of stability properties found by the separation
of variables analysis of Molinart and Leroy coincide with the more rigorous predictions
arising in the variational analysis that we follow.,

In the case of a nonconducting material, Tzavaras (1986) studied the adiabatic shearing
of a non-Newtonian matenial with temperature-dependent viscosity, and proved that a
uniform shearing solution of system (1) with 2 = 0 is asymptotically stablcas r = v . Ina
more striking result, Tzavaras (1987) considered the adiabatic plastic shearing of an infinite
slab subjected to prescribed traction at the boundaries. By assuming that thermal softening
prevails over strain hardening, he classified a set of inttial conditions for which a classical
solution ceases to exist within a finire ime.

In contrast to the adiabatic models assumed in the above works, our thermal boundary
conditions approximate an enveloping heat bath, Consequently truly steady-state solutions
of (5)-(8) can and do arise. It should be remarked that it is a point of some debate as to
whether or not steady-state shear bands have time to arise in actual experiments before
other phenomena, such as fracture. dominate the physical behavior. In either case we believe
an understanding of steady-state solutions to be important because the critical points have
a large bearing upon the dynamics of the time-dependent parabolic system (5), which is
generally accepted as a reasonable model on some time scale.

While difficulties associated with time-dependence of the basic solution do not arise in
our model. the solutions that we examine have nontrivial spatial dependence. Consequently,
a stability analysis based upon lincarization and scparation of the time variable would
involve a nonsymmetric eigenvalue problem for a system of differential equations with
nonconstant coeflicients. A direct assault on such problems can be quite complicated [cf.
Chen er al. (1989) and Molinari and Leroy (1990)]. In the present paper we employ an
intrinsically different strategy that is based upon ideas arising from bifurcation theory for
problems with an underlying variational structure. The new techniques apply to only a
restricted class of constitutive relations, but strengthened results are obtained for this
somewhat smaller class of materials. Moreover. the simplest, standard constitutive relations
fall within the purview of our variational analysis. First a phase-plane argument is used to
construct all steady-state solutions of (5)—(8) in cases that arise when the form of constitutive
relation (6) is such that the steady-state problem possesses an underlying variational
structure. We then apply results of Maddocks (1987). which provide a characterization of
those extremals that are actually local minima purely in terms of the shape of the branch
of solutions in a certain bifurcation diagram.
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The cases of both stress boundary conditions (7). and velocity boundary conditions
(8) will be treated. As in the nonvarniational problem, there is a multiplicity of equilibrium
(steady-state) solutions of (3)~(8). dependent upon the range of the nondimensional par-
ameters o, ¢y and ~. In the variational formulation. the steady-state solutions are also
extremals of a certain potential. For boundary conditions (7) an unconstrained variational
principle is appropriate, but boundary conditions (8) are encompassed by consideration of
a conditional variational principle involving an isoperimetric side constraint. In either case.
the results of Maddocks (1987) can be exploited. Moreover. the potential, or Lagrangian,
is a Lyapunov functional whose time derivative along solutions of (5)—(8) is nonpositive.
Concomitantly, provided that an appropriate existence result for the time-dependent system
is either known or is assumed. we obtain nonlinear. dynamic stability of steady-state
solutions that are local minima. Because the dynamics are dissipative, instability of steady-
state solutions that are other types of extremals can also be expected. While it is apparent,
on physical grounds. that the set of all solutions is the same for both boundary-value
problems. our variational analysis clarifies the connections between the two loading
mechanisms and also contrasts the differences in stability properties that arise in the two
problems.

Our conclusions are as follows. For the class of constitutive relations detailed in
eqns (135) and (26) (see also Fig. 1). there is a one-parameter family of steady-state
solutions of (5) and (6). subject to either boundary conditions (7) or (8). The maximum
temperature of the solution. ¢, say. provides a smooth parametrization of a solution branch
along which the boundary data o, or r, must be chosen appropriately. There are no
other steady-state solutions. The steady-state velocity at the top boundary is an increasing
function of the branch parameter 6, and consequently boundary conditions (8) with a
prescribed value of ¢, yield a unique solution. The boundary stress does not depend on 0,
monotonically. In fact for a, sufliciently targe, (5)-(7) has no solution, for o, sufliciently
small there are two solutions, and for intermediate values there may be any even number
of solutions. The exact number depends upon the precise constitutive relation that s
assumed. A representative biturcation diagram is depicted in Fig, 4b, where ¢, has been
plotted against o, Our stability results can be summarized in terms of the solution branches
in this figure, 1t will be convenient to describe segments of a solution branch on which 4,
increases with increasing ry as forward-going, and segments on which g, decreases with
increasing oy as buckward-going. Our analysis will demonstrate that the entire branch is
stable whenever the velocity boundary conditions (8) are enforced. In contrast only the forward-
going scgments are stable when the loading mechanism is such that the stress boundury
conditions (7) are appropriate. The precise sense in which we use the adjective stable will
be turther described in Section 5.

The remainder of the presentation has the following structure. Section 2 clussifies those
stress -strain luws (0, v,) that admit a variational formulation of the steady-state problem.
A summary of the results of Maddocks (1987) that will be employed here is given in Section
3. The core of our analysis is contained in Section 4, which describes the detailed phase-
plane arguments that provide the bifurcation diagrams (Figs 3 and 4b) for the steady-state
problem. In Section 3, the appropriate Lyapunov stability results are outlined. Our results
are summarized in Section 6.

2. THE VARIATIONAL FORMULATION

In this section we shall determine a class of constitutive relations (6) that is compatible
with a variational formulation of the steady-state problem. The analysis is a simple example
of what is sometimes called the inverse-problem of the calculus of variations, namely find
a functional that gives rise to prescribed Euler-Lagrange equations. It will be shown that
a variational principle arises only if the dependencies of the constitutive law upon the
temperature and strain-rate are coupled in a very particular way. We seek a function
X = Z(0,r,). and a (positive) constant x with the property that the Euler-Lagrange equa-
tions of the functional

SAS 29:16-C
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1 I .
I(B.r..0y) = f [; E(}; +Z(0.r) -—a(,r{]dx.
11 2K

(=D =0 8(-=0(1=0, (10)

coincide with the time-independent version of eqgns (5). Because 8, occurs in neither (3) nor
(6). the integrand of (10) can have no more complicated dependence on 8. The dependence
of (10) on @ and ¢, is for the moment arbitrary, but the particular form written here will
simplify subsequent calculations. The third term in the integrand of (10) accounts for the
fourth boundary condition. If o, is specified, then the natural boundary condition at x = 1
will complete the stress boundary conditions (7) (vide infra). The velocity boundary
conditions (8) are recovered if o, is interpreted as a Lagrange multiplier associated with
the constraint r(1) —r(~1) = ry.
The Euler-Lagrange equations of (10) are

_ g 45, =0.
K

(Z, —a0), = 0. (1)

Comparison with the steady-state equations arising from (5) and the boundary conditions,
then provides the relations

I =o0. (12)

When o is climinated from eqns (12), a first-order partial differential equation for ¥ is
obtained :

Ly+arZ, =0 (13)

The general solution of (13) can easily be found by the method of characteristics {see, e.g.
Courant and Hilbert (1962)]. The solution is

£(0.0) = G (e ™r,). (14)

where G is an arbitrary smooth function of a single variable. Consequently (14) gives the
most general form of the function T for which (10) provides a variational formulation of
the steady-state problem. From (12) it follows that the associated constitutive relation is

al.r)=c Pgc "r,), {15)

where g(p) = G'{p). A detailed discussion of the appropriate assumptions on g(p) will be
provided later, but we remark in passing that the Clausius-Duhem inequality is satisfied by
the constitutive law (15) provided that « > 0 and g(p) is 2 monotone increasing function.

The choice g{p) = p was used in the papers of Joseph (1964) and of Mazo and
Ruderman (1986} in connection with Couette flow, and by Chen er af. (1989} in modelling
shear-band type, steady-state solutions in solids. Molinari and Leroy (1990) assume that
g(p) = p*, i.e. a simple monomial. Accordingly, the stability resuits that will be obtained in
this paper include, and generalize, the results of the above-mentioned papers that concern
the same boundary conditions.
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3. A VARIATIONAL STABILITY THEOREM

This section summarizes the theory developed in Maddocks (1987) that will be
exploited in the stability arguments of Section 5. The most general case will not be described ;
rather the analysis will be specialized to a framework appropriate to the example at hand.
namely the steady-state solutions of (5). The central idea is this: in specific circumstances
the properties of the second variation at solutions of a one-parameter family of variational
principles can be analysed exhaustively using only information contained in a certain
distinguished bifurcation diagram.

Consider a one-parameter family of vartational principles of the standard calculus of
variations type

h

mig I(v.y) = f F(x. vy, v, 7)dx (16)

4

Here »(x) is a vector function of the scalar variable ., 3’ is the vector of derivatives with
respect to x, y is a scalar parameter, 8 denotes an appropriate set of functions (including
boundary conditions) and F(x. y.p.y) is a smooth function from R x R" x R"x R to AR.
The derivation of the first- and second-order conditions associated with (16) is completely
standard. See. for example, Gel'fand and Fomin (1963) or Cesari (1983). In particular, for
given 7, the first-order conditions include the system of Euler-Lagrange equations

—(F (e p )+ E(xe p, 077) =0, (17

and possibly, dependent upon the precise form of the set B, some natural boundary
conditions. We shall assume that cqns (17) have been solved for a family of solutions,
or extremals, ( (s).7(s)) with #e B. Here s denotes an arbitrary, smooth, nonsingular
parameterization of the branch of extremals, i.c. #3477 # 0 for any value of s.

The second-order conditions guarantecing that an extremal is actually a local minimum
are of two types. First, it will be assumed that Legendre’s strengthened condition holds
everywhere, that is the matrix of sccond partials with respect to the derivative variable is
everywhere positive definite,

F

w > 0. (18)
The remaining second-order condition reduces to a study of the symmetric eigenvalue
problem associated with Jacobi's accessory equation, namely

—(Fpuc+Fpu) +Flu +F,u= pu, (19)

subject to the appropriate homogencous, lincarized boundary conditions. Here u(x) is the
cigenfunction, g is the eigenvalue, and the coefficients £,,, F,, and £, denote the appropriate
second-order derivative matrices evaluated on the extremal ( 7, 7). If (19) has only positive
cigenvalues, the associated second variation is a positive-definite quadratic form, and
conscquently the extremal (#,7) is actually a local minimum (in the Cla, 4] topology).
The special structure that will be exploited here is that a complete family of extremals
is under consideration, and the Euler-Lagrange equations (17) can be regarded as defining
a bifurcation problem with an associated variational structure. Such problems have two
special features. First, Hopf bifurcations cannot arise, and second. as a branch of extremals
is traversed, the eigenvalues of (19) can only change sign when there is a bifurcation point
(or singularity) in the family of extremals [Krasnoselskii's Theorem, see e.g. Zeidler (1985).
Kicthofer (1988)]. In the absence of symmetry the only structurally stable, or robust,
singularities are (simple) fold points, and we shall assume that no other bifurcations arise.
A fold point is characterized by the property that it is an extremal for which the parameter
7(5) realizes either a local minimum or maximum along the branch of extremals. Con-
sequently a fold point separates the branch of extremals into two segments both of which lie
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(locally) either to the left or right of the fold point in any bifurcation diagram with ; plotted
as abscissa (cf. the solution branches in Figs 3 and 4b). The two cases will be referred to
as suberitical and supercritical folds. respectively.

The principle of exchange of stability 1s a classic result tracing back at least to Poincaré
(1883). It implies the following: whenever one branch of a simple fold is stable. that is
whenever (19} has only positive eigenvalues, then on the other segment (19) has at least
one negative eigenvalue. The results derived in Maddocks (1987) are related. but provide
strengthened conclusions that are valid only when the bifurcation problem can be associated
with a variational principle. In particular, stability of one segment of the fold does not have
to be taken as a hypothesis. Instead it is observed that there is a distinguished functional,
namely

.
/

=1 Fx.vovody, (2

i

il

—l(r.})

with special properties. Explicitly, in a bifurcation diagran with — L ¥.5) plotied as ordinate
and 7 as abscissa, etgenvalue problem (19) on an upper branch. adjacent to a subcritical
fold has at least one negative eigenvalue. Similarly on the /ower branch adjacent to a
supercritical fold etgenvalue problem (19) has a negative etgenvalue. These strengthened
variational results wre particularly useful on solution branches that are folded several times.

The idea underlying the proof is simple. Differentiation of (17) with respect to s reveals
that when 7 = 0-—e.g. at a fold point—zero is an cigenvalue of (19). Moreover it can
be shown that the sign of the derivative of the critical cigenvalue with respect to the
parameterization s is encoded in the shape of the solution branch in the (7, — 1) bifurcation
diagram. It happens that as a subcritical fold 1s traversed upward, an cigenvalue of (19)
crosses from the positive half-line through zero to the negative half-line, and vice versa for
a superceritical fold.

If degencerate cases involving cigenvalues that only touch zero can be excluded, and
the possibility of zero cigenvalues of (19) with muluplicity greater than one can also be
ruled out, then more information can be extracted. In such felicitous circumstances precisely
one cigenvalue passes through zero at cach fold point, and the direction of crossing is
completely determined trom the distinguished bifurcation diagram. For our purposes it
suftices to remark that the degenerate case of an cigenvalue touching zero and not passing
through is impossible provided that the branch of extremals in the (v, — /) diagram is
smooth with no cusps. The phase-plane analysis described in Section 4 implies the desired
properties for the examples of this paper. The same phase-plane analysis also demonstrates
that the only bifurcations are fold points. However. the possibility of multiple eigenvalues
must be precluded by direet caleulation. The required analysis will be described in Section
5.

{n many physicul problems, including the one considered in this presentation, the
parameter 7 enters the problem lincarly, and the integral appearing in (16) is of the special
form

I(v.y) = J [Gx. v )= H(x v D)) dx. (21)

Then the distinguished bifurcation diagram is a (5. {; /) plot. Such diagrams often have
physical significance. For example a load vs displacement diagram is obtained for appli-
cations in elasticity with uniaxial dead loading. For the plasticity problem (35)-(7) it will
later be seen that the distinguished bifurcation diagram is a plot of loading force vs (average)
strain-rate.

It is well appreciated that the precise manner in which external loads are imposed has
a considerable influence on the stability properties of physical systems. In typical dead or
soft loading an external force is prescribed. The associated variational principles are often
of the type (16). with 7 of the special form (21). and ; plays the role of a specified loading
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parameter. On the other hand in typical displacement or hard loading. some generalized
displacement is imposed. The associated variational characterizations are then usually
constrained variational principles. For example

b
miél ( Glx. y. ¥)dx, 22)
subject to the side condition

h
Jiy)y = j Hix. v, y)dx =K, {23)

i3

where A denotes some prescribed value of the generalized displacement. The exact type of
loading does not affect the set of all equilibria. or extremals. In the constrained variational
principle the puarameter y enters as an undetermined Lagrange multiplier associated with
constraint (23). and the variational principle again has (21) as Lagrangian. As all values of
v are scanned, all realizable values of K are achieved, and rice versa. Accordingly the
distinguished (5. J) bifurcation diagrams for the two problems are identical.

When an extremal is actually a local minimum it can reasonably be anticipated that a
stability result will be forthcoming. For a dead-loading problem with an associated vari-
ational principle of the type (16), we have already seen that the local minima are determined
by cigenvalue problem (19), and. in turn, the eigenvalue problem can be analysed purely
from knowledge of the distinguished (7, J) bifurcation diagram. The stability of steady-
state solutions ol (5) and (6) subject to boundary conditions (7) will be analysed in this
fashion.

For a displacement louding problem with an assoctated constrained variational prin-
ciple of the type (22) and (23), the requirements for a local minimum are less stringent [see,
for example, Hestenes (1966) or Luenberger (1969)]. Explicitly the scecond variation of (21)
need only be defintte for variations /i(x) that satisfy the lincarized constraint

b
f (H,(x, §. 9 +H,(x, . #)h)dx = 0. (24)

Consequently there can be constrained local minima at which (19) has a negative eigenvalue,
In Section 5 of Maddocks (1987) it is shown that the set of all constrained local minima
comprises the union of the set of unconstrained local minima, with the set of extremals at
which (19) has one negative cigenvaluc and the derivative of J with respect to v along the
solution branch is negative

—~ < 0. (25)

But &7y is the slope of the solution branch in the distinguished (y, J) bifurcation diagram.
Conscquently the second-order conditions of the constrained variational principle can again
be analysed once the (7, J) bifurcation diagram has been calculated. This is the result that
will be used to determine the stability properties of the steady-state solutions of (5) and (6)
subject to boundary conditions (8).

We shall make use of one more general observation.,

Lemma 1. Af the (unconstrained) second variation is positice definite at an extremal of
(21} then 80y is positive at that solution.

In one guise or another this result is widely known. One demonstration is provided in
Lemma 5.1 of Maddocks (1987).
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4. THE BIFURCATION DIAGRAM

The purpose of this section is to construct the bifurcation diagram for solutions of (5)-
(8) when the constitutive relation (6) is of the special variational form (15). With no real
loss of generality we shall restrict attention to solutions with v, > 0, so that the constitutive
function need only be defined for non-negative arguments. It will be assumed throughout
that the function G(p) is twice continuously differentiable for p > 0 (and twice continuously
right differentiable at p = 0). and that g(p) = G'(p) satisfies the constitutive hypotheses

g0y =90, ¢g(p)>0. ¥p=0. (26)

In Part I of this paper, the assumption that ¢(0) = 0 will be relaxed to g(0) = g, = 0. and
go will be interpreted as a model of the limiting plastic yield stress. The steady-state version
of (5). or equivalently the Euler-Lagrange equations of functional (10), reduce to

- af?

(e Mgle v.)—a,), =0,

0. +re Mgle "r)e, =0. (27

Then 6, 1s negative, so that # realizes its minimum on the boundary. From the non-
dimensional boundary conditions (7) or (8) this minimum is 0,,,, = 0.
The first of eqns (27) can be integrated to yield

C X“_‘/(c 10,.‘) =0a,. .\‘E[—- l‘ |] (28)

At first sight it would seen that an additional constant of integration should appear in (28),
but this is not so. In the case of stress boundary conditions (7). @, is prescribed, and the
natural boundary conditions associated with (10) imply that the additional constant of
integration vanishes. In the case of velocity boundary conditions (8), o, is undetermined
and can therefore be regarded as the integriation constant.

Our next objective is to invert eqn (28), and thereby eliminate the unknown ¢ By
constitutive hypotheses (26), the function ¢ is monotone increasing with domain [0, =« ). Tt
will be further assumed that ¢ has range [0, o), te. }lnm g(p) = «. Then g has un
associated continuously differentiable, monotone inverse-function, denoted f, with domain
[0, %) and range [0, ). Now (28) can be inverted to yield

ro=c fo,e™). (29)
In light of (29), eqns (27) are reduced to
0. +nra,c¢" f(og,e™) =0, (30)
After multiplication by (x/x)0,, (30) can be integrated to yield the first integral

lx .
’;%0:'{”"—(”09’“) = A, (3D
K

where Fis an anti-derivative of /. and A4 is a constant of integration. Because /is monotone,
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Fig. 2. The phase plane for eqn (30). The graphs are trajectories in the plane with (¢, 0,) as abscissa
and ordinate respectively. The particular function f that we have chosen for this example is the
inverse of the constitutive function g described in the caption of Fig. |, namely

Slx) = x*

The phase plane with g, = 1 is shown,

the function Fis necessarily convex. Accordingly the phase-plane is of the qualitative form
depicted in Fig. 2.
The steady-state boundary conditions on ¢ are

o(-1)=0(1)=0. (32)

Consequently a trajectory in the phase-plane is a solution of the two-point boundary value
problem provided that it starts on the line § = 0 when x = — 1 and recrosses the same line
when x = L. In other words we must select the trajectory that has the correct transit “time™.
This requirement implies a dependence between A and g,. That dependence will now be
determined explicitly.

It is apparent from the phase-plane that any solution 8(x) is even about x = 0, and
that the maximum value of # occurs at x = 0. Denote this maximum value by 6,,. Then
A = F(o,¢"), and (31) can be rewritten

Lef? = J ’ @ (33)

o

By symmetry, a trajectory will satisfy the two-point boundary conditions if

0 )y
<[ [ 2
- ] dx

But (33) allows df/dx to be eliminated, which provides the equation

do 2K

J; L] 1/2 = ;—' (34)
(f J(r) dr)

»
LY
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Fig. 3. The bifurcation diagram for the inverse function f described in the caption of Fig, 2. The

solution branches are drawn in the preferred coordinate system with , as abscissa and ry, as

ordinate. Fach solution branch is for a particular value of the parameter & [of, eqn (101] in the range
(1.0, 2.4].

When the constitutive tunction is quadratic i, G(p) = Lp7.then fis alincar function.
and eqn (34) can be explicitly integrated to provide the condition

log [e™ U 4 "”L'"X(”'" b N
N [ N I =ay . (15)

i 8}
L’ tee

[cf. the analyses of Joseph (1964), Mazo and Ruderman (1986) and Chen et al. (1989)].
Equation (35) defines o4 as a function of 0,€[0, ). Accordingly 0, can be used as a
parametrization of a unique branch of solutions in a bifurcation diagram with any quantity
plotted as ordinate. A bifurcation diagram with the velocity v, of the top boundary chosen
as ordinate is depicted in Fig. 3. The solution branches are parametrized by the maximum
temperature 0 < 0, < ». The pertinent features are that on each branch there are two
nonuniform steady-state solutions for o, sufliciently small, no solution for g, large, and
ao(0,) — 0 in cither of the limits 0, —= 0 or 0, — ». The work of Chen er al. (1989)
demonstrated vie direct calculation of the lincarized dynamics that the steady-state con-
figuration corresponding to the lower branch is stable when regarded as a solution 10 the
full system of partial differential equations with stress boundary conditions (7). Molinari
and Leroy (1990) used a quasi-static approximation to reach similar conclusions (depending
upon the precise boundary conditions at hand) for the constitutive law g(p) = p* (in our
notittion).

Whenever fis not lincar-—that is when G is not a quadratic --eqn (34) can no longer
be integrated explicitly. Nevertheless, we shall show that several of the qualitative features
of the lincar case persist. More specifically 0, can be used to parametrize a unique branch
of solutions. a,(f,) — 0 when 0, = 0. and a4(0,,) = 0 as 0, — x. These claims will be
proven in two Lemmata presented below. It should. however, be remarked that in the
nonlincar casc the solution branch can have multiple folds, rather than the single fold which
arises when [ is lincar. For example Fig. 4b illustrates the solution curves that arise for a
given piccewise linear constitutive function f for various values of the parameters 2 and .

Our analysis will be facilitated by the introduction of the notation
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(36)

The function T(s,.8,) is (up to a constant fuctor) the time-map from # =0to § = ¢, on

the trajectory with integral constant 4 = F(ag,
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).

—
[ ]
T

i

4

6

o S

8

10

i

2 14

Fig. i An inverse function f(x) defined in terms of piccewise lincar functions
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Fig. 4b. The bifurcation diagram analogous to that shown in Fig. 3, but now corresponding to the
inverse function f defined in Fig. da.
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Lemmua 2.0 For fixed k and 2 {positive). egn (33) uniguely defines u positive function
(. 0<h, < 7.

Proof. Equation (34 is a refation of the form

T, .6,) = const. (37)
We shall show that
T ) .
. <, imT®,.0,=x». and lim T(0,.0,) =0 (38)
CTy a0 o et

The propertics described in (38) are sufficient to allow a global implicit function theorem
to be applied to (37). It may thereby be concluded that to each given value of 8, > 0, there
is o unique posttive value of g, (0. 7 ) such that eqn (37) holds. In other words the
conclusions of the Lemuma follow.

Dircet caleulation provides the expression

C e -
( ' /() dt)
Since (1) /& monotone, (2) a, > 0, and (3) 6 < ¢ < . it may be concluded that the

numcrator of the integrand in (39) is positive, Thus, ¢ T70a, < 0.
By monotontcity (2} = « for z sufliciently targe. Thercefore,

Gy 2

roe e
TOy.00 < J o (40)
&6y, )

. T R
for o, sutliciently large. The integral appearing in (40) is finite, so

hm 7(0,.0) = 0.

t

Similarly, because f(0) = 0, we have that f(z) < M|z| for z suthciently small, Thercfore

.

i -
ds 0,
I(0,.64) 2 e TG E R (41)
o ¢ ‘ : IMe., et
(J j(r)dr) Ve
n
for &, sulliciently smull and positive, and consequently
fiy 000} = . e
Lemma 3. The function o,(0,) satisfies
limoyt,y =0, limea,l,) =0 (42)
H,t 0 [

Proof. We proceed by contradiction in the case that 0}, — .. The other case is similar.
If the function a,4(0,,) does not tend to zero there will be an infinite sequence 0, with the
property a,(07) > d for some constant d, and lim, ., 0 = ». Monotonicity of f implies
that on this sequence a, (1))
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a,‘c”"" 3 5™
j‘ findt=2 |  f(de

5 o3

iy 0T ¢

Because f(p) is strictly positive and monotone. there also exists a positive constant ¢ such
that f(z) = ¢ for all - = 4. Consequently from (36) for each 6], we have the estimate

1 (" de
T o000 € —= |~ (43)
\/;5 0 (e¥m—e™)’ -

But it can be calculated that in the limit n — o and 87, — x¢ the right-hand-side of (42)
approaches zero. This limiting behavior provides a contradiction because. by definition of
ao (i) the time map T(6;,.0.(05,)) is a nonzero constant independent of 2. O

In order to exploit the stability-prediction theorems that were described in Section 3,
we must construct the distinguished bifurcation diagram. The general theory will be applied
in the specific case that arises when integral (10) is identified with functional (21), and 5,
plays the role of the parameter y. The distinguished functional is then

]
-1, = J e ()de=e(D)=e(=1) =e(l) =0, (44)
-1

where the boundary condition r{—1) = 0 has been invoked. Accordingly we wish to con-
struct the (a,.r,) bifurcation diagram. Notice from boundury conditions (7) or (8) that
cither ay or vy is preseribed, and the other is to be determined. However we wish to find all
solutions as both &, and vy are varicd. Consequently the set of all solutions is the sume for
both boundary-value problems.

It has alrcady been determined that 0,€[0, o0) provides a parametrization of the
unique branch of solutions, and the qualitative features of the dependence of o4 on G, have
been found. The final result of this section will describe the dependence of ¢4 on 0,,. This
dependence completes the qualitative information required to determine stability properties
purcly in terms of the shape of the solution curve in the distinguished bifurcation diagram.

Lemma 4. The function vy(0,) is monotone increasing, and satisfies

ry(0) =0, uligl, vo(n) = 0. (45)

Proof. It has already been shown that 04{0) = 0. Accordingly (28) and constitutive
hypotheses (26) imply that when 0, = 0, v {x) = 0. Therefore 0,(0) = r(—1) = 0.
Next we note that eqns (27) and (28) imply the identity

l)“'f'l\.'a'nv‘ = 0. (46)

Integration with respect to x, followed by exploitation of boundary conditions and
symmetry of the phase-plane, then yields the expression

20‘ —1 ()m
o(0y,) = u‘*‘;\%‘ (0)(}‘2

47

Because 6, — 0 in the limit ¢, — <, and because inspection of the phase-plane reveals that
0.(—1) is bounded away from zero in the same limit, it can be concluded that
lim,)m, « ‘.0(0"1) = L.
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[t only remains to prove that ¢.(6,)) 1s a monotone increasing function. However our
proof will involve a ditferent parametrization. Let a new variable i(x) be defined in terms
of #(xy and 7. through

1
wix) = dxy+ - loga,. (48
%

Then the maximum value of . namely .. arises at x = 0, and is determined by ¢, We
will show that i, induces a new parametrization of the solution curve. To sce this notice
that the function () satisfies the ditferential equation

Vo RS f(e) =0, (49)

fcl. egn (30)] subject to the boundary conditions
| <
=1 =4y = loga,. (50)
x

{cf. boundary conditions {32)]. In contrast to the phase-plane (31) for (0.0,), the phase-
plane

| N
S W FeM) = (S

- N

of (f ) does not depend on oy, Rather the dependence on oy has been transferred to the
boundary conditions. To see that #,, parametrives the curve of solutions we merely integrate
(493 with mital data () = o, () = 0 backwards in v from vy =0 to x = —1. Then
the vatue (-~ 1), symmetry of the phase-plane, and boundary conditions (50) wilt uniquely
determine the appropriate value of ¢, tor a solution,

The remainder of the proot'is completed in two steps. First it will be shown that the
two parametrizations 8, and i, are one-to-once. so that 4, increases monotonically with
... Then a phase-plane argument will be used to analyse monotonicity propertics of ry{i,,).
which will imply the required monotonicity properties of r,(0,,).

Suppose that the two purametrizations ¢, and ,, are not onc-to-one, so that there
exist two values 0, # 0. with ¢, = ... Then the associated functions (x) and Y(x) both
satisty egn (31 tor some values of the integration constant 4 and A. But the maximum

vitlues of @ (xy and e[;{\} are equal and are both achieved at x =0, so f (0) = tzf 0y =0,
and consequently A = 1. Therefore (x) = (x). From the definition (48) of i we conclude
that 0(x) = 0(x) + 1'% (logd, —loga,). And from the boundary conditions {32) we have
that 0(1) = d(1) = 0. so it may be concluded that 6, = d,. Thus #(x) = 0(x), and in
particular 0, = (0, which provides a contradiction. Accordingly it may be concluded that
,, and i, are in a one-to-one rekution.
Representation (473 of ¢, cun now be rewritten in the form

2{)\( "’ ] H"{/u\)

52
K”ll('pm) ( )

vol,) =

Morcover the requirement that the time-map along trajectorics in the phase-plane (51) have
vitlue 1 can be written as

I N -
] o (53)
i} CW](C”}

where to perform the integration in (53). ¢ must be eliminated in favor of the variable ¢
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through the first-integral }(x k)3 + F(e™) = A. For our purposes the given form of (33).
and monotonicity of the constitutive function f suffice to demonstrate that ¢ (—1) =
#.(—1) is a monotonically increasing function of the parameter ¢, and therefore of the
parameter 6.

Representation (52) now reveals that r(¢,,) is monotone increasing on any segment
for which o,(1/,,) 1s decreasing. That is ¢, is an increasing function of .. and theretore also
of 0., on any backward-going segment of the solution branch in the bifurcation diagram
(cf. Fig. 4b). In the next section we shall prove that all forward-going segments represent
local minima. The general result described in Lemma | then implies that v4(0,) is also an
increasing function on forward-going segments. The combination of these two arguments
demonstrate that ¢,(,,) 1s monotone increasing on the entire branch, as was required. (This
argument has the possibility of being circular because it appears that we here use stability
properties to prove monotonicity, and monotonicity to prove stability in Section 5. However
the argument detailed in the next section is logically correct. We start from a particular
extremal that is shown to be stable by direct calculation. Lemma 1 then applies to prove
monotonicity on the first forward-going segment. The argument given here proves mono-
tonicity on the first backward-going segment. which implies. by general arguments, stability
of any second forward-going segment, etc.) O

It should be remarked that the parametrization ¢, introduced in the proof of Lemma
4 could have been adopted throughout the analysis of this section. Some parts of the
analysis would thereby have been simplificd and others complicated. We have chosen to
favor the parametrization by 0,. in part because of its direct physical interpretation as
maximum temperature.

5. THE STABILITY ANALYSIS

In this section the theory of Section 3 is applied to the variational characterization (10)
of the steady-state solutions to (5)-(8), and those extremals that actually realize local
minima are identified. The implications of this static analysis for stability properties in the
dynamic sense of Lyapunov are also discussed.

The first step is to verify the hypotheses upon which the general theory of Section 3 is
predicated. In the specific context of the variational principles developed in Section 2 and
Scction 4, the phase-plane analysis yiclds much of the required information. In particular
0,, provides u smooth parametrizition of & unique solution branch, and differentiation of
(33) demonstrates that the parametrization is nonsingular. Furthermore, the Lemmata off
Section 4 show that the projection of the solution branch onto the distinguished (a4,.14)
bifurcation diagram is 4 smooth, uncusped curve.

It only remains to verify Legendre's strengthened condition (18), and to ascertain
whether g = 0 can be a multiple eigenvalue of (19). When functional (16) is of the purticular
form (16), with Z satisfying constitutive law (14), we have that

o /K 0 s
2 () c*‘.’:l’G"(c-:l'l.‘) . (D )

Consequently, in light of constitutive hypotheses (25). condition (18) is satisfied only
provided that = > 0. Jacobi's cigenvalue problem (19) at a solution (0. 7,) is

(A s PN |
Tdvll o Al )T eot+iA) 0]y
O ((70 +L:,(A) (b.r 2 (l:.t00+[..3‘4) 0 d) ¢
”"[O 0 ][w,]“[ 0 OJM”‘M (3)

where the notation 4 = e~ "'G"(e~*'#.) has been introduced. The eigenfunctions (¢(x),
(x)) must satisfy the linearization of the boundary conditions appearing in (10). namely
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(=D =a¢l)=h(-1)=0. (36)
In addition there is the linearization of the natural. stress boundary-condition. namely
(1) =0 (57)

Lemma 5. If =0 is an cigenvalue of (35) subject to boundary conditions (35) and
(63). it is simple.

Proof.Suppose that (4", ") is a pair of eigenfunctions of (35) with ¢t = 0 as eigenvalue.
Then the second differential equation in (55) can be integrated. and. in light of boundary
conditions (56) and (57).

PG e NN = 2oy +e TG (e )" (x).

Consequently, ¥V (x) can be eliminated from the first equation in (55). and ¢"(.xv) can be
seen to be an eigenfunction of a second-order, symmetric cigenvalue problem with separated
boundary conditions. Such problems have simple eigenvitlues. )

The implications of the analysis of Section 3 are now considered. The first step is to
determine the number of negative cigenvalues of (55) -(37) at one particular extremal. The
simplest candidate s 0, = 0. Then g, =0 and £,(x) = 0. It is apparent that for these
coctlicients (55) has only positive eigenvalues. The stability propertics ol all other extremals,
subject to either stress or velocity boundary conditions, can now be ascertained with no
further concerete caleulation.

Stress boundary conditions (7) will be considered first, and the bifurcation diagrams
depicted in Figs 3 and 4(b) will be referred to throughout. The propertics of extremals will
be examined as the parameter 0, 1s increased, and, according to Lemma 4, the bifurcation
branch is traversed upward. Because the extremal at ¢, = 0 has been shown to be a local
minimum of (10), and because the phase-plane analysis shows that there is no other solution
bifurcating from the primary branches of solutions, the classic principle of exchange of
stability applies to provide the information that all of the extremals on the lowest forward-
going secgment are local minima. That is, eigenvalue problem (55) (57) at any extremal on
the lowest segment has only positive cigenvalues. The classic principle of exchange of
stability also implics that there is a negative cigenvalue everywhere on the lowest, backward-
going segment, and consequently the associated extremals are not local minima. However
for parameter ranges where the bifurcation curve exhibits multiple folds, the classic results
can give no information beyond the second fold point.

The analysis of Section 3 provides the same predictions as the classic results up to the
second fold point. However it also yiclds information for the remainder of the sofution
branch. Because ¢, is monotonically increasing on the backward-going segment (Lemma
4), the upper branch of the first (sub-critical) fold is necessarily connected to the lower
branch ol the second (super-critical) fold. Accordingly the results of Scction 3 apply to
state that an eigenvalue passes from the negative half-line to the positive half-line as the
second fold is traversed upward. As there was only one negative cigenvalue on the backward-
going segment, it may be concluded that on the second forward-going scgment there is no
negative cigenvalue. Consequently the entire segment represents local minima, and ¢y is
monotone increasing. The arguments then repeat at any subsequent folds. In summary, it
has been demonstrated that for the case of stress boundary conditions (7). cach forward
going scgment represents local minima. Moreover on each backward going segment, eigen-
value problem (55)-(57) has precisely one negative eigenvalue. and consequently the associ-
ated extremals are not minima.

The velocity boundary conditions (8) will now be considered. Then boundary condition
(57) is no longer appropriate and must be replaced by
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Y(l) =0. (58

However the eigenvalue problem need not be re-examined. Instead the velocity boundary
condition

i
to=v{l)=rv(l)—v(-1)= J r.(x)dx. (39)
i

can be treated as an additional isoperimetric side-constraint, and (38) can be regarded as
the linearization of (59). The example exactly fits that part of the general framework
described in Section 3 which concerns differences in stability properties under hard and soft
loading. The theory of Maddocks (1987) can be applied. and. for the particulur problem
at hand. it may be concluded that @/l extremals are constrained local minima. The pertinent
observations are as follows. Eigenvalue problem (55)—(57) has at most one negative eigen-
value. When there is no negative eigenvalue, the extremal is a local minimum. and therefore,
a fortiori, it is a constrained local minimum. A negative eigenvalue occurs only on backward
going segments for which o, is decreasing with €. Because ¢, always increases with 0, it
may be concluded that

N
oo, (60)

‘o,

which is precisely condition (25). Consequently, for velocity boundary conditions (8). the
entire branch of solutions represent local minima.

The property of being a local minimum will now be related to dynamic stability
propertics. The connection is a standard one, namely Lyapunov's dircet method. When
constitutive relation (15) is assumed, the functional / defined by (10) is a Lyapunov
functional on smooth solutions of dynanical system (5). Differentiation of  with respect to
t yields:

d/ Yla
4= J I:'\' 00,4 {—ab,c “v.4+¢ *r,|G’ —ﬁ(,z",:]d.\u (61)
|

Integration by parts on the terms involving xr derivatives, and use of boundary conditions
(7) or (8), then provides the equation

| 1
=f E(),(-—()n —uc""zg(i')d.\'—f r(c *G7), duv. (62)
{ -1

But § and v are solutions of the dynamical system (5), so (62) is equivalent to

d/ ! . s
o J [1 07 + u,-] du. (63)
ds RS

Itis apparent from (63) that provided a2 > 0 the derivative of /is negative along non-stcady-
state trajectorics of (5). Consequently (10) is a candidate for a Lyapunov functional.

The above calculations suflice to prove nonlincar dynamic stability in the scnsc of
Lyapunov for extremals that are local minima, provided that a global existence result is
assumed for the time-dependent initial-boundary-value problem. While the static or encrgy
criterion for stability is widely accepted. it is important to realize that from a mathematical
point of view our analysis is incomplete until a global existence theorem has been obtained
for a class of initial data close to the extremal whose stability is in question. Questions of
existence cannot be completely disregarded on physical grounds. For example, with non-
linear constitutive laws. the possibility of the formation of shocks or other singularities
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must be precluded. Moreover the existence result must be in a sufficiently regular class of
functions that the formal manipulations of the Lyvapunov function performed above can
be justified. The derivation of such a result is likely to be dithicult, and highly technical. and
it will not be pursued here. The most closely-related existence results known to us are given
in Dafermos and Hsiao (1982) and Tzavaras (1987). In the former. the existence of global
smooth solutions to the equations of one-dimensional thermo-visco-elasticity is proven in
the case of stress-free and tnsulated boundary conditions and under the additional assump-
tion that the stress depends hinearly on the strain-rate. In the latter paper a local existence
theorem is proven for thermally non-conducting materials (i.e. 2 =0 in (1)). Although
these papers exploit restrictive assumptions not satisfied by our model, they indicate the
general techniques and approaches that would likely have to be adopted in order to obtain
any analogous theorem for the system (3)-(8). The recent work of Charalambakis and
Murat (1989) extends the same line of analysis, and obtains existence of global weuk
solutions in the adiabatic special case of equs (1) that arises when 2 = 0.

6. SUMMARY AND CONCLUSIONS
In this paper we have analysed a model of thermo-plastic materials in which the stress
a(tl.r,) is determined by a constitutive law of the form

)

ah,e) =¢ Pgle M) (64)
where ¢g(p) is any smooth function satisfying constitutive hypotheses (26). We believe
hypotheses (25) to be both mild and physically reasonable for deformations at high strain
rates for which elastic effects may reasonably be neglected. In Part 11 of this paper we shall
extend our analysis to include constitutive relations that incorporate a yield stress that
models residual elastic effects: Fo our knowledge there is little experimental evidence either
to confirm or refute the particular temperature dependence of ¢ implied by (64). Wright
(1987) discusses such issues and describes alternative models. While the constitutive relation
(64) appears to be somewhat special we remark that it contains an arbitrary function g(-)
which need only satisfy certain smoothness and growth hypotheses. [n this sense the class
of constitutive relitions falling within the scope of our stability analysis is comparatively
large. Prior stability analyses have assumed some specific form of constitutive relation
containing only a few arbitrary constants. The form of constitutive relation (64) certainly
captures the analyses of most prior authors.

For our purposes the key feature of constitutive refations of the type (64) is that they
are intimately related to the existence of a potential. A usetul analogy can be drawn with
clasticity, where certain clastic constitutive relations can be assoctated with a strain energy,
in which case the material s sometimes described as hyper-clastic. Thus materials satisfying
(66) might be described as hyper-thermo-plastic. (However we personally do not intend to
promulgate such jargon.) For such materials the steady-state solutions of the dynamical
system (5)-(8) can be characterized as extremals of the functional

h .
B r . 6y) = [ / [1 : 0+ Ge ™)) —O’.,l“} d., (65)
where G denotes the anti-derivative of the constitutive function ¢.

Steady-state solutions of (5)-(8) satisfy a two-point boundary-value problem for a
system of two. coupled. sccond-order, ordinary differential equations. In Section 4 it was
shown that solutions of this system arc completely described by the single phase-plane (31)
(cf. Fig. 2). Analysis of this phase-plane demonstrates that the two-point boundary-value
problem possesses a unique one-dimensional family of solutions that can be parametrized
by the maximum temperature ,, of the solution. In the case that G(p) is quadratic. g(p) is
linear, and the stress ¢ has a linear dependence on strain-rate v'.. The bifurcation diagram
can then be found in closed form [cf. (34)]. and there is only one fold in the branch of
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Fig. 5. The temperature and velocity profiles of the solution corresponding to the point
(74, tg) = (1.263, 61.236) in the bifurcation diagram depicted in Fig. 3. The abscissa is x. In part
{4) the ordinate is temperature 6, and in part (b) the ordinate is velocity ¢,

solutions (cf. Fig. 3). For more general constitutive laws the exact form of the bifurcation
diagram must be calculated numerically. For example for the constitutive relation depicted
in Fig. 4(a). the bifurcation diagram is shown in Fig. 4(b) (the different branches correspond
to different values of the constant on the right-hand-side of (37), which corresponds
physically to different combinations of the material parameters). These solution branches
were found by numerically integrating the differential equation (48) from initial conditions
(¥(0). ¥ (0)) = (Y. 0), and the values of o, and v, are then determined from (Y (1). ¥ (1))
by using eqns (50} and (47). It is apparent that the solution branch may or may not have
multiple folds. It is interesting that the existence and the number of multiple folds seem to
be related to the relative sizes of the regions of convexity and concavity of f.

Figure 5 shows the temperature and velocity profiles of a steady-state solution cor-
responding to the constitutive law described in the caption of Fig. |. These data are
given here merely to confirm the general properties of solutions that were predicted. The
temperature is maximal in the center of the band, as is the velocity gradient v.. We do not
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claim that these particular solutions provide compelling evidence for shear-bands, but they
do possess the correct qualitative features. Moreover the velocity profile steepens quickly
as the branch of solutions is traversed outward. Nevertheless a detailed numernical study of
the solution profiles is a work unto itself and we do not perform it here.

The stability properties of all solutions have been determined. whether the constitutive
law gives rise to a single told or multiple folds. In the case of stress boundary conditions
(7). the solution branch that passes through the origin is stable up to the first told point.
Stability is lost for the backward-going segment that lies between the first and second folds.
and 1s regained at the third fold point. Stability is then successively lost and regained at any
further fold points. Stability is here used in the sense that the steady-state solution in question
realizes a focal minimum of the potential (65). According to the theory of Maddocks (1987)
that is summarized in Section 3, such stability results can be obtained immediately once
the qualitative properties of the (g,.¢y) bifurcation diagram have been ascertained either
analytically or numerically.

In the case of velocity boundary conditions (8). all solutions are stable. The differences
in stability properties between stress and velocity boundary conditions are explained by the
fact that the appropriate vanational principle for velocity boundary conditions involves a
side constraint. In order to be stable for velocity boundary conditions, an extremal need
only realize a conditional local minimum. which 1s a less stringent requirement than
that which arises for stress boundary conditions. The theory of Maddocks (1987) again
alows o classitication ot conditional local minima to be obtained directy from the
distinguished (g, ¢, bifurcation diagram. We remark that the solution shown i Fig. 5 1s
actually unstable under stress boundary conditions (7) and stable under velocity boundary
conditions (8).

To our knowledge all of the above results are new. A direct analysis of Tincar stability
would involve lincarization of the system (5) and separation of the time varable. For
general constitutive relations the cigenvalue problem so obtained would give nise to a non-
self-adjoint system of ordinary differential equations with nonconstant coctlicients. The
difticultics in estimation of cigenvalues of such problems should not be underestimated.
Prior analyses have only been carried out for very particular constitutive laws, and with
certain other simplifying assumptions. Two such assumptions are to cither freesze the
cocllicients and so obtain & constant coctlicient cigenvalue problem. or to neglect aceel-
cration terms in which case the order of the differential system is decreased. The relationship
between the cigenvalues ol either of these simplified problems, and those of the full cigen-
value problem is unclear. Stability analyses of the problem with velocity boundary con-
ditions are particularly rare. The only other such analysis known to us was carried out by
Molinari and Leroy (1990) with a separation of variables argument. They assume a simpler
class of constitutive relations than that allowed here, and make the quasistatic assumption
in which acceleration terms are neglected. A byproduct of the approach outlined in this
paper is the unification of the stability analyses of the problems with stress and velocity
boundary conditions.

Because the time-derivative terms enter (5) in o particularly simple fashion, it s
apparent that our steady-state, variational characterization of stability propertics coincides
with predictions that would arise from the eigenvalue problem that is obtained from
lincarization of the dynamical system followed by separation of the time variable. However
it is possible to do better than that. In Section 5 it was shown that the potential (63) is a
Lyapunov function for the full nonlinear dynamics (3) -(8). The characterization of stable
and unstable steady-state solutions purely in terms of the type of the associated critical
point of the potential is thereby justified, provided only that an appropriate time-dependent
existence theorem is proven for the governing system of partial differential equations.
However such an existence result is not available at this point, although the recent theorem
of Charalambakis and Murat (1989) points to the right tools and techniques needed in
producing a theorem on the existence of global weak solutions for our problem. Accord-
ingly, when the constitutive relation for the stress g is of the form (13). we believe that our
analysis resolves questions of stability of the steady-state solutions of (5)~(8) to the full
extent currently possible. Nevertheless questions of time-dependent existence remain. The
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nonvariational case which arises for constitutive relations more general than (15) is also an
open problem. although some partial results are obtained in Malek-Madani ez af. (1991).
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